SOME PERFLUOROALKYL GRIGNARD REAGENTS AND THEIR DERIVATIVES

S. S. DUA, R. D. HOWELLS and H. GILMAN Department of Chemistry, Iowa State University, Ames, Iowa 50010 (U. S. A.) (Received October 21, 1973)

Summary

Some perfluoroalkyl Grignard reagents have been prepared in high yields through halogen-metal exchange reactions between perfluoroalkyl iodides (R_fI) and EtMgBr. Derivatization with Me_3SiCl or Me_2HSiCl gave satisfactory yields of the corresponding silylated products in THF. However, ether was a very poor solvent for reaction of R_fMgBr with these chlorosilanes. The exchange reaction between R_fI and EtMgBr was nearly quantitative in ether as evidenced by high yields of the 1-hydroperfluoroalkanes upon hydrolysis, but the major product from the attempted silylation in ether was a *trans*-vinyl bromide [1], *i. e.*

Spectral data are presented for several new compounds.

Introduction

Perfluoroalkyl Grignard derivatives of the type R_fMgBr have been prepared by a halogen--metal exchange reaction between R_fI and RMgBr in ether $[2 - 5]^*$. Previous work in our laboratories indicated that THF was a good solvent for the formation of silyl derivatives of R_fMgBr [6] and $BrMg(CF_2)_6MgBr$ [7] types generated through halogen-metal exchange. The present study deals with the extension of our earlier work.

Results and discussion

Reaction of $n-C_{10}F_{21}I$ or $n-(CF_3)_2CFO(CF_2)_nI$ (n = 2, 4, 6 and 8) with EtMgBr in THF followed by derivatization of the perfluoroalkyl Grignard reagents with chlorosilanes or *ca*. 3 mol l^{-1} HCl gave the corresponding perfluoroalkyl derivatives (Table 1).

^{*} See Note added in proof.

Derivatives of perfluo	roalkyl Grignard re	eagents				
Perfluoroalkyl derivative (% yield)	B. p./ °C (mmHg)	$^{n}_{D}^{20}$	IR/cm ⁻¹	¹ H NMR ^d /ð in ppm	Elemental found (cal C	analysis: cd.) H
n-C ₁₀ F ₂₁ SiMe ₃ (63.0)	73 - 74 (5)	1.3248	C—F: 1245, 1210, 1150 SiMe: 850, 765	SiMe ₃ : 0.30 (s)	26.32 (26.37)	1.40 (1.53)
n-C ₁₀ F ₂₁ SiMe ₂ H (57.1)	75 (10)	1.3200	Si-H:2175 C-F: 1250, 1205, 1150 SiMe: 845, 780	SiMe ₂ : 0.38 [d, J(Me, H) = 3.8 Hz] Si-H: 4.25 (b)	25.05 (24.93)	1.07 (1.22)
R(CF ₂) ₂ SiMe ₃ ^{a,b} (65.0)	122 - 123 (micro)	1.3180	C—F: 1245, 1195, 1135 SiMe: 850, 760	SiMe ₃ : 0.29 (s)	27.03 (26.82)	$2.37 \\ (2.54)$
R(CF ₂) ₄ SiMe ₃ ^{a,b} (58.4)	54 - 55 (35)	1.3184	C—F: 1100 - 1300 SiMe: 845, 765	SiMe2: 0.31 (s)		
R(CF ₂) ₄ SiMe ₂ H ^{a,b} (67.6)	60 - 61 (80)	1.3092	Si-H: 2170 C-F: 1245, 1195, 1150 SiMe: 840, 790	SiMe ₂ : 0.38 [d, J(Me, H) = 3.8 Hz] Si-H: 4.25 (b)	24.21 (24.33)	1.37 (1.59)
R(CF ₂) ₆ SiMe ₃ ^a (59.6)	68 - 69 (8)	1.3184	C—F: 1250, 1200, 1150 SiMe: 850, 765	SiMe ₂ : 0.31 (s)	26.05 (25.82)	1.37 (1.63)
R(CF ₂) ₆ SiMe ₂ H ^a (68.8)	52 - 53 (10)	1.3110	Si-H: 2175 C-F: 1100 - 1300 SiMe: 840, 785	SiMe ₂ : 0.39 [d, J(Me, H) = 3.7 Hz] Si-H: 4.20 (b)	24.43 (24.28)	1.10 (1.30)
R(CF ₂) ₈ SiMe ₃ ^a (62.3)	83 - 84 (10)	1.3188	C—F: 1250, 1200, 1155 SiMe: 855, 770	SiMe ₃ :0.30 (s)	25.80 (25.52)	1.43 (1.38)
R(CF ₂) ₆ H ^a (68.5)	124 - 125 (micro)	I	C—H: 2985 C—F: 1100 - 1300	$CF_2H: 6.08 [tt, J(CF_2, H) = 52 Hz, J(CF_2, H) = 51 Hz, J(CF_2CF_2, H) = 5 Hz]$		
$ m R(CF_2)_8H^a$ (63.1)	52 - 53 (50)	1	C—H: 2990 C—F: 1100 - 1300	$CF_{2}H: 6.00 [tt, J(CF_{2}, H) = 52 Hz, J(CF_{2}, E) = 5 Hz, J(CF_{2}CF_{2}, H) = 5 Hz$	22.50 (22.55)	0.31 (0.17)
n-C ₁₀ F ₂₁ H ^c (84.0)	33.5 - 34.5 (m. p.)	I	C—H: 2995 C—F: 1100 - 1300	$CF_{2}H: 5.85 [tt, J(CF_{2}, H) = 51.5 Hz, J(CF_{2}, H) = 51.5 Hz, J(CF_{2}CF_{2}, H) = 5 Hz]$		
${}^{a}R = (CF_{3})_{2}CFO. {}^{b}Pr_{1}$ d = doublet, t = triple:	epared earlier by and $b = broad$, $tt = tr$	n in situ tec iplet of trip	hnique [9]. ^c Ref. 8. ^d The foll dets.	owing abbreviations are used:	s = singlet,	

TABLE 1

The reaction conditions have a significant effect upon the yields of the perfluoroalkylsilanes. THF has been found to be a good medium. Long reaction time (6 - 8 h) at low temperature (-78 °C) was essential in promoting moderately high yields.

In contrast, derivatization of $n-C_{10}F_{21}MgBr$ with Me₂RSiCl in ether provided only *ca.* 5% yields of the silyl derivative, and none was observed in the corresponding $n-(CF_3)_2CFO(CF_2)_nMgBr$ reactions. The main product was a *trans*-vinyl bromide compound [1], *i. e.*

$$\begin{bmatrix} R_{f} \\ F \end{bmatrix} = C \begin{bmatrix} F \\ Br \end{bmatrix}$$

It appears that silvlation of R_fMgBr requires a medium of higher dielectric constant (*i. e.* THF) than is provided by ether. Differences in the thermal stability of the R_fMgBr reagents in ether and THF at low temperature were not sufficient to account for the observed results.

Other active trimethyl
silylating reagents may be effective in characterizing
 $R_f MgBr$ in ether as well as in THF.

Experimental

All reactions were carried out in an atmosphere of pre-purified nitrogen. Glassware was dried at 120 °C, assembled while hot and flushed with nitrogen. Ether and THF were dried by standard methods. Distillation of a mixture of telomer iodides (Thiokol Corp.) provided pure $n-C_{10}F_{21}I$. Perfluoro-(isopropoxy)alkyl iodides (Allied Chemical Corp.) were shaken with sodium thiosulfate and distilled before use.

IR spectra were taken as thin films. UV spectra were recorded in hexane on a Cary model 14R spectrometer. The UV spectra of the perfluoroalkyl iodides gave $\lambda_{max.}$ 272.0 ± 0.5 with (ϵ) 220 - 300 while silyl derivatives gave $\lambda_{max.}$ 232.5 ± 0.5 with (ϵ) 15 - 30. ¹H NMR (CCl₄/CFCl₃) spectra were recorded on a Varian HA-60 spectrometer. ¹⁹F NMR (CCl₄/CFCl₃) spectra were obtained with a Varian HR-100 spectrometer tuned to 94.075 MHz and peak center positions are reported in ppm upfield (-) from CFCl₃ internal standard. Preparative GC was performed on either a F and M model 500 or Hewlett-Packard model 776GC with 15% SE-30 on 60 - 80 mesh Chromosorb[®] P packed 3 m columns.

TABLE 2

10							
15F	NMR	spectral	data	of some	perfluoroalky	yl Grignard	derivatives

Compou Chemica	und ^a al shift in	ppm (—)								
CF ₃ (81.7)	CF ₂ (127.0)	CF ₂	CF ₂	CF_2	CF ₂	CF ₂	CF ₂	CF_2	CF ₂ (129.0)	SiMe ₃
		· <u> </u>	- <u>n</u> -	(122.5, (123.3,	10F) 2F)			(119.6)		
CF ₃ (81.7)	CF ₂ (126.9)	CF ₂	CF_2	CF ₂	CF ₂	CF ₂	CF ₂	CF ₂ (120.7)	CF ₂ (127.2)	SiMe ₂ H
				(122.6, (123.4,	10F) 2F)					
(CF ₃) ₂	CFO (146.0)	CF_2	CF_2 (126.0)	$(CF_2)_2$ (122.8)	CF_{2} (119.6)	CF_2 (129.1)	SiMe ₃			
(81.5, 8	(110.0) F)		(120.0)	(122.0)	(110.0)	(120.1)				
(CF ₃) ₂	CFO (145.8)	CF ₂	CF_2	$(CF_2)_2$	CF_2	CF_{2}	SiMe ₂ H			
(81.2, 8	(140.8) F)		(120.0)	(122.2)	(120.0)	(127.1)				
(CF ₃) ₂	CFO (146.0)	CF₂ ∟	CF ₂ (125.9)	$({\rm CF}_2)_4$ (122.7)	CF ₂ (119.5)	CF ₂ (129.1)	SiMe ₃			
(81.5, 8	F)									
(CF ₃) ₂ (81.0)	CFO (146.0)	CF ₂ (82.7)	CF ₂ (130.5)	SiMe ₃						
$(CF_3)_2$ (81.2)	CFO (145.4)	CF ₂ ((80.7) (CF ₂ (125.1)	CF ₂	CF ₂	CF ₂	CF ₂	CF ₂ (129.8)	CF ₂ H (137.7)	
(01.2)					(122.0, (123.7,	6F) 2F)				
$(CF_3)_2$ (81.2)	CFO (145.5)	CF_2 (80.8)	CF_2 (125.3)	CF ₂	CF ₂	$CF_2 CF_2H$ (130.0) (137.8	CF_2H (137.8)			
(01.2)	(110.0)	(00.0)	(120.0)	(122.7, (123.8,	2F) 2F)	(100.0)	(101.0)			
CF _{3.}	CF_2	CF ₂	CF ₂	CF ₂	CF ₂	CF ₂	CF ₂	CF_2	CF_2H	
(01.4)	(120.3)			(121.8, (122.8, (123.2, (123	8F) 2F) 2F)			(129.4)	(130.2)	

^a Integrated intensities always indicated the expected number of fluorine nuclei for a given peak.

General preparation of perfluoroalkylsilanes

The perfluoroalkyl iodide (x mol) was treated with EtMgBr (1.1 x mol)in THF (75 cm³ per 0.01 mol) at -78 °C and stirred at this temperature for *ca.* 45 min. The chlorosilane (1.1x mol) was added and the reaction mixture was stirred at -78 °C for 6 - 8 h, slowly warmed to room temperature and the solvent was removed under reduced pressure. The pot residue was then extracted with hexane. Subsequent distillation on a spinning-band column afforded the desired perfluoroalkylsilanes (Tables 1 and 2).

Preparation of 1-hydroperfluoro-n-decane

The Grignard reagent from $n-C_{10}F_{21}I$ (6.46 g, 0.01 mol) and EtMgBr (0.01 mol) in ether (75 cm³) at -78 °C was hydrolyzed with 3 mol l⁻¹ HCl. After warming to room temperature, additional ether (*ca.* 50 cm³) was added. The ether solution was washed (3 × 25 cm³ H₂O), dried (MgSO₄) and distilled to give 4.36 g (84%) of $n-C_{10}F_{21}H$, m.p. 33.5 - 34.5 °C (cited [8]: 31 - 32 °C).

Acknowledgements

Support of this research by the National Science Foundation (GP-34632) is gratefully acknowledged. We also thank Drs. F. J. Marshall, R. H. Gobran, J. S. MacKenzie and R. F. Sweeney for assistance.

References

- 1 R. D. Howells and H. Gilman, J. Fluorine Chem., 4 (1974) 247.
- 2 O. R. Pierce, A. F. Meiners and E. T. McBee, J. Amer. Chem. Soc., 75 (1953) 2516.
- 3 E. T. McBee, A. F. Meiners and C. W. Roberts, Proc. Indiana Acad. Sci., 64 (1955) 112.
- 4 E. T. McBee, C. W. Roberts and A. F. Meiners, J. Amer. Chem. Soc., 79 (1957) 335.
- 5 R. D. Chambers, W. K. R. Musgrave and J. Savory, J. Chem. Soc., (1962) 1993.
- 6 M. R. Smith, Jr., D. S. Sethi, B. B. Singh and H. Gilman, unpublished USAF studies.
- 7 M. R. Smith, Jr. and H. Gilman, J. Organometal. Chem., 46 (1972) 251.
- 8 A. F. Benning and J. D. Park, U. S. Pat., 2,490,764 (1949); Chem. Abstr., 44 (1950) 3003.
- 9 D. S. Sethi, B. B. Singh and H. Gilman, unpublished studies.

Note added in proof

We have learned that a relevant article by D. D. Denson, C. F. Smith and C. Tamborski has recently appeared in J. Fluorine Chem., 3 (1974) 247.